搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
出版时间 :
金属氧化物压敏电阻:从微观结构到宏观特性
0.00     定价 ¥ 158.00
浙江图书馆
  • ISBN:
    9787302533368
  • 作      者:
    何金良
  • 出 版 社 :
    清华大学出版社
  • 出版日期:
    2019-08-01
收藏
作者简介

何金良教授1994年在清华大学获得博士学位。于1994年4月开始在清华大学电机系任教,2001年提升为教授。1997年至1998年期间,为韩国电气研究所电材料部访问科学家。目前,他是清华大学高压研究所所长,主要从事电介质材料和电工陶瓷、避雷器技术、电力系统及电子系统的电磁暂态和电磁兼容、先进电能传输技术等方面的研究。

何金良教授在国际著名刊物发表论文130余篇,在中文核心期刊发表论文150余篇,在重要国际会议发表论文150余篇,同时合作编写6本专著及教材。获国家发明二等奖一次,省部级科技进步奖12项,是2008年亚太电磁环境国际会议暨第19届苏伊士电磁兼容国际会议优秀学生论文的合著者。

2007年因在电能传输系统的雷电防护和接地技术方面的杰出成就而被评为IEEE会士。2010年获得IEEE电磁兼容学会的“技术成就奖”,2011年获得IEEE电磁兼容学会的“致谢证书”。

何金良教授2004年荣获国家杰出青年基金,2010年被聘为教育部“长江学者特聘教授”。


胡军博士1998年、2000年、2008年在清华大学分获学士学位、硕士学位和博士学位。2008年开始在清华大学从事博士后研究,2010年8月开始在清华大学


展开
内容介绍
  金属氧化物压敏电阻是电力和电子系统的关键保护器件,直接决定系统运行的安全可靠性。
  《金属氧化物压敏电阻:从微观结构到宏观特性》系统介绍了氧化锌等压敏电阻的基础研究、制各工艺、性能调控及应用进展,包括导电及老化机理、微结构电特性、微结构测试及微结构仿真分析、高梯度低残压氧化压敏陶瓷、氧化钛及氧化锡等其他体系压敏陶瓷的研究进展等,构建了压敏电阻微结构特性与宏观特性之间的关联性。
  《金属氧化物压敏电阻:从微观结构到宏观特性》可供高校和科研院所电气工程、微电子、材料等专业的师生以及电力传输、电气设备制造等行业的工程技术人员阅读和参考。
展开
精彩书摘
Introduction of Varistor Ceramics
Zinc oxide (ZnO) varistor, which is a kind of polycrystalline semiconductorceramic composed of multiple metal oxides and sintered using conventionalceramic technology, is a voltage-dependent switching device, which exhibitshighly nonohmic current–voltage characteristics above the breakdown voltage.Basic information on ZnO varistors, including the fabrication, microstructure,and typical electrical parameters, is introduced. The history and applications ofZnOvaristorsarealsopresented.Thepanoramaofalternativevaristorceramicsfor Bi2O3-based ZnO varistors is mapped out. Especially, the ceramic–polymercomposite varistors with lower breakdown voltage, incorporating varistorparticlessuchassemiconductingparticles,acombinationofmetalandsemiconducting particles, and ZnO microvaristors, in a polymeric matrix are reported.Now, varistors are available that can protect circuits over a very wide range ofvoltages, from a few volts for low voltage varistors in semiconductor circuits to1000kVACand ±1100kVDCinelectricalpowertransmissionanddistribution networks. Correspondingly,theyalsocanhandleanenormousrangeofenergiesfromafewjoulestomanymegajoules.
1.1 ZnO Varistors
A varistor is an electronic component with a “diode-like” nonlinear current– voltage characteristic, which is a portmanteau of variable resistor [1]. Function-ally,varistorsareequivalenttoaback-to-backZenerdiodeandaretypicallyusedin parallel with circuits to protect them against excessive transient voltages insuch a way that, when triggered, they will shunt the current created by the highvoltageawayfromsensitivecomponents.
The most common type of varistor is the metal oxide varistor (MOV), whichcontains a ceramic mass of ZnO grains, in a matrix of other metal oxides, suchas small amounts of bismuth, cobalt, and manganese, sandwiched between twometal electrodes. The boundary between each grain and its neighbor controlsthe current according to the applied voltage, and allows current to ?ow in twodirections. The mass of randomly oriented grains is electrically equivalent to anetworkofback-to-backdiodepairs,eachpairinparallelwithmanyotherpairs.Avaristor’sfunctionistoconductsigni?cantlyincreasedcurrentwhenvoltageisexcessive.Onlynonohmicvariableresistorsareusuallycalledvaristors[1].
In normal use, a varistor is subject to a voltage below its characteristic breakdown voltage and passes only a tiny leakage current. When the voltage exceedsthe breakdown voltage, the varistor becomes highly conducting and draws alargecurrentthroughit,usuallytoground.Whenthevoltagereturnstonormal,the varistor returns to its high-resistance state [2]. The result of this behavior isa highly nonlinear current–voltage characteristic [3–5], in which the MOV hasa high resistance at low voltages and a low resistance at high voltages; usually,the resistivity of a ZnO varistor is more than 1010 Ω cm below the breakdown voltage, whereas it is less than several ohm-centimeters above the breakdownvoltage [6]. The switch is reversible with little or no hysteresis although it candegrade under electrical loading [2]. A varistor remains nonconductive as ashunt-mode device duringnormaloperation when thevoltageacrossit remains wellbelowits“clampingvoltage”;thusvaristorsaretypicallyusedforsuppressingline voltage surges. However, a varistor may not be able to successfully limita very large surge from an event such as a lightning strike where the energyinvolvedismanyordersofmagnitudegreaterthanitcanhandle.Follow-throughcurrent resulting from a strike may generate excessive current that completelydestroysthevaristor[1].
ZnO varistors are voltage-dependent switching devices, which exhibit highlynonohmic current–voltage (I–V) characteristics above the breakdown voltage. The nonohmic I–V characteristics are usually expressed logarithmically, asshown in Figure 1.1 [6]. The degree of nonohmic property is usually expressedbyanonlinearcoe?cient ?? de?nedbythefollowingequation:
?? = V dV (1.1)
I dI
Empirically,thefollowingsimpleequationisused:
( V )?? I = (1.2)
C
Current density (A cm–2)
Figure 1.1 I–V characteristicsofatypicalZnOvaristor.Source:AdaptedfromEda[6].
1.2 Fabrication of ZnO Varistors
Figure 1.2 ThewurtzitestructureofZnO. Source:AdaptedfromAddison[7].
whereC isaconstant.Typical?? valuesofZnOvaristorsarefrom30to100;therefore,thecurrentvariesbyordersofmagnitudewithonlysmallchangesinvoltage.A more accurate measure of the nonlinearity is the dynamic conductance, thedi?erentialofthe characteristic,ateach voltage[2]. Onthecontrary, ?? values of conventionalvaristorssuchasSiCvaristorsdonotexceed10.
The I–V characteristics of ZnO varistors are classi?ed into three regions, asshowninFigure1.2[6].InregionI(lowelectrical?eldregion,orpre-breakdownregion), below the breakdown voltage (typically a voltage at 1 μAcm?2), thenonohmic property is not so prominent and can be regarded as ohmic, andthe leakage current is highly temperature dependent. In region II (mediumelectrical ?eld region, nonlinear region, or breakdown region), between thebreakdownvoltageandavoltageatacurrentofabout100Acm?2,thenonohmic propertyisveryprominentandalmostindependentoftemperature.InregionIII (high electrical ?eld region or upturn region), above 100Acm?2, the nonohmic property gradually decays, and the varistor is again ohmic. These three regionsin engineering applications are also called as the low current region, mediumcurrentregion,andhighcurrentregion,respectively.

展开
目录




展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

温馨提示:请使用浙江图书馆的读者帐号和密码进行登录

点击获取验证码
登录