搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
出版时间 :
Plasmon-enhanced Fluorescence: Principles and Ap
0.00     定价 ¥ 69.00
浙江图书馆
  • ISBN:
    9787302519201
  • 作      者:
    孙萌涛,全军
  • 出 版 社 :
    清华大学出版社
  • 出版日期:
    2019-01-01
收藏
作者简介
孙萌涛教授,主要从事基于表面等离激元增强的分子拉曼光谱的实验和理论研究。研发高真空针尖增强拉曼和荧光光谱仪,实现目标分子拉曼光谱的超灵敏检测,并揭示表面等离激元增强拉曼光谱的物理和化学机制。以通讯作者(或一作者)在国际重要学术期刊上发表SCI 论文超过150 篇(其中ESI 高引论文8篇)。所有论文引用约4800多次,H-index 36。Researcher ID: B-1131-2008。10次应邀在国际重要期刊撰写本领域的综述。应邀撰写英文专著(科学出版社)2 本(第作者)。2016 年,获辽宁省科学技术(自然科学)二等奖(个人第二)。专著:
1. Mengtao Sun, et al., Photoinduced Electron Transfer in organic Solar Cell: Principle and Applications, 科学出版社, 2017年.
2. Mengtao Sun, et al., Tip-enhanced Raman and fluorescence spectroscopy, 科学出版社, 2017年.
展开
内容介绍
本书将从原理和应用两个方面详细介绍多种环境下的等离激元增强荧光。基于局域表面等离激元共振的等离激元能提供荧光所需要电子和能量,在表面等离激元增强荧光,针尖增强荧光光谱,表面等离激元增强上转换荧光材料,表面等离激元增强的共振荧光能转移的过程中发现等离激元能选择性增强分子或材料体系的荧光。
展开
精彩书摘

Chapter Ⅰ
Introduction

The optically generated collective electron density waves on metaldielectric boundaries known as surface plasmons have been of great scientific interest since their discovery[1]. Being electromagnetic(EM) waves on gold or silver nanoparticle’s surface, localized surface plasmons (LSPs) can strongly enhance the EM fields[2]. These strong EM fields near the metal surfaces have been used in various applications like surfaceenhanced spectroscopy (SES), plasmonic lithography, plasmonic trapping of particles and plasmonic catalysis,etc[36]. Resonant coupling of LSPs to fluorophore can strongly enhance the emission intensity, the angular distribution and the polarization of the emitted radiation and even the speed of radiative decay, which is socalled plasmonenhanced fluorescence (PEF)[7]. As a result, more and more reports on surfaceenhanced fluorescence have been reported, such as surface plasmon amplification by stimulated emission of radiation (SPASER), plasmonassisted lasing, singlemolecule fluorescence measurements, surface plasmoncoupled emission (SPCE) in biological sensing, optical device  designs,etc[810]. In this book, we focus on the principles and recent advanced reports on plasmonenhanced fluorescence.


All the color figures please scan the QR code.



References



[1]RITCHIE R H. Plasma losses by fast electrons in thin films[J]. Physical Review, 1957, 106(5):  874881.

[2]MOSKOVITS M. Surfaceenhanced spectroscopy[J]. Review of Modern Physics, 1985, 57(3):  783826.

[3]NIE S, EMORY S R. Probing single molecules and single nanoparticles by surfaceenhanced Raman scattering[J]. Science, 1997, 275(5303):  11021106.

[4]ESPINHA A, DORE C, MATRICARDI C, et al. Hydroxypropyl cellulose photonic architectures by soft nanoimprinting lithography[J]. Nature Photonics, 2018,12: 343348.

[5]JUAN M L, RIGHINI M, QUIDANT R. Plasmon nanooptical tweezers[J]. Nature Photonics, 2011, 5(6):  349.

[6]ZHANG Z, FANG Y, WANG W, et al. Propagating surface plasmon polaritons:  towards applications for remoteexcitation surface catalytic reactions[J]. Advanced Science, 2016, 3(1):  1500215.

[7]GEDDES C D. Surface plasmonenhanced photochemistry[M].//Metalenhanced fluorescence. New York:  John Wiley & Sons, Inc., 2010:  769800.

[8]OULTON R F, SORGER V J, ZENTGRAF T, et al. Plasmon lasers at deep subwavelength scale[J]. Nature, 2009, 461(7264):  629632.

[9]PINILLA D H, MOLINA P, HERAS C D L, et al. Multiline operation from a single plasmonassisted laser[J]. Acs Photonics, 2017, 5(2): 406412.

[10]FANG Y, SUN M. Nanoplasmonic waveguides:  towards applications in integrated nanophotonic circuits[J]. Light Science & Applications, 2015, 4:  e294.


展开
目录
CONTENTS

PlasmonEnhanced Fluorescence: Principles and Applications
CONTENTS

Chapter ⅠIntroduction

References

Chapter  ⅡPhysical Mechanism of PlasmonEnhanced Fluorescence

2.1Introduction

2.2The principle of PEF

References

Chapter ⅢPlasmonEnhanced Fluorescence

3.1Introduction

3.2PEF from periodical metallic plasmonic nanostructures

3.2.1PEF from nanograting substrate

3.2.2PEF from nanohole arrays substrate

3.2.3PEF from nanoparticle arrays substrate

3.2.4PEF from nanorod arrays substrate

3.3PEF from nonperiodical metallic plasmonic nanostructure

3.3.1PEF from metallic silver island substrate

3.3.2PEF from metallic fractallike substrate

3.3.3PEF from deposited metallic nanoparticle substrate

3.4The wavelength and spacer effect towards the fluorescence
enhancement

3.5Conclusion and prospect

References

Chapter ⅣTipEnhanced Fluorescence

4.1Introduction

4.2Experimental works on tipenhanced fluorescence

4.3Theoretical calculations on tipenhanced Raman
spectroscopy


4.4Results and discussion

4.5Conclusion and outlook

References

Chapter ⅤPlasmonEnhanced Upconversion Photoluminescence:
Physical Mechanism and Applications
5.1Introduction

5.2Mechanism model of upconversion fluorescence

5.3Plasmonenhanced upconversion

5.3.1Plasmonenhanced upconversion photoluminescence
from periodic plasmonic nanostructures

5.3.2Plasmonenhanced upconversion photoluminescence
from nonperiodic plasmonic nanostructures

5.4Plasmonenhanced from single rareearthdoped
nanoparticles

5.5The applications of plasmonenhanced UC luminescence

5.6Conclusion


References

Chapter ⅥTimeResolved PlasmonEnhanced Fluorescence for
ExcitonPlasmon Interaction
6.1Introduction

6.2Two methods for the excitonplasmon coupling

6.2.1The first method

6.2.2The second method

6.3Conclusion

References

Chapter ⅦPlasmonEnhanced Fluorescence Resonance Energy Transfer

7.1Introduction

7.2Fluorescence resonance energy transfer

7.2.1The definition and physical mechanism of FRET

7.2.2Methods to measure FRET efficiency

7.2.3Applications of FRET

7.3Plasmonenhanced fluorescence

7.3.1The principle of PEF

7.3.2Principle of  PEFRET

7.3.3Application of  PEFRET

7.4Summary

References

ACKNOWLEDGEMENTS



展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

温馨提示:请使用浙江图书馆的读者帐号和密码进行登录

点击获取验证码
登录