绪论
第1章 高比例并网风电与电力系统动态问题
1.1 高比例并网风电基本情况
1.1.1 风力发电的发展现状
进入 21世纪以来,全球风电市场进入了一个快速增长的阶段,近年全球风电新增及总装机容量如图1-1所示。在中国、美国、德国、印度等国家的引领下,全球风电的总装机容量从 2001年的 24GW跃升至 2020年的 743GW[1]。虽然前些年风电装机容量增速有所放缓,但全球风电总装机容量仍保持 10%以上的增长速度,并在 2020年创下了单年新增 93GW的新高。除欧美、中国、印度等成熟的风电市场外,近年来也涌现了一批新兴风电市场,包括菲律宾、泰国、越南、阿根廷、哥伦比亚、智利等国家,在当地政府制定的风电发展目标和规划的驱动下,风电装机容量持续增长。在全球风电快速发展的同时,我国风电装机容量一直保持着高速增长,近年的总装机容量和年装机容量稳居全球第一。 2020年,我国新增风电装机容量为 52GW①,年装机容量超过全球其他国家总和,到 2020年底总装机容量达到 288GW,约占全球总装机容量的 38.8%;风电发电量达 4665亿 kW . h,全国风电平均利用小时数 2097h[1,2]。
图1-1 近年全球风电新增及总装机容量[1]
随着风电装机容量的持续增加,电力系统的格局已呈现出风电局部高比例的特征,全球范围以欧洲尤为显著。2020年欧洲风电总装机容量为 220GW,年发电量能够满足全欧洲 16.4%的电力需求 [3]。其中丹麦风电发电量与电力负荷的比值达到了 48%,爱尔兰达到了 38%,德国、英国、葡萄牙、瑞典和西班牙的比值在 20%以上。我国部分省份的风电已成为省级电网的第二大装机电源[4],且具有继续上升的趋势,多个省份的风电装机容量已经超过 10GW。西北地区为我国*先大规模开发风电的地区,风电发电量一直位于全国的领先水平,风电的发电量也一直在持续上升,其中甘肃风电发电量更是在 2021年 1月 18日达到 10.24GW的历史新高,占全省发电出力的 39.77%,占甘肃全网用电负荷的 66.76%[5]。西南地区中,云南电网风电占总发电电源装机的比例虽只有约 13%,但在春节低负荷、低外送方式下会出现特殊高占比运行方式。2019年春节期间,风电出力正常占比在 20%~40%,*大约 7000MW,*高占比达到 50%。我国中东部风电开发也在加速进行。2020年,华东 5个沿海省市在电价政策的影响下,海上风电市场随着陆上风电一齐快速增长,其中江苏省在 2020年新增风电装机 5GW,累计装机容量达到 15.5GW[6]。由此可见,无论是国外还是国内,部分地区中风电的比例已经相当高,甚至已成为局部电网中的主要电源,风电的局部高比例已经成为电力系统的一个重要特征。
1.1.2 风力发电的发展趋势
当前,局部高比例场景已在陆上、风电资源集中区域显现,近年全球陆上风电与海上风电新增装机容量对比如图1-2所示。未来,全球风电仍将保持高速发展的态势。据 GWEC预测,2021~2025年全球新增风电装机容量将达 469GW[1],风电电源将由局部高比例逐步发展为全局高比例的新形态,特别是将来海上风电、分布式发电的崛起,会使并网风电格局由局部高比例转变为全局高比例。
图1-2 近年全球陆上风电与海上风电新增装机容量对比
在海上风电方面,海洋可再生能源行动联盟(Ocean Renewable Energy Action Coalition,OREAC)提出到 2050年,全球将有大约 1400GW的海上风电装机容量,覆盖全球约十分之一的电力需求 [7],海上风电的发展在未来将具有更高的地位。 2009年之前,全球每年海上风电新增装机容量占全部风电新增装机容量的比例不到 1%,2010~2014年增长到约 3%,2016年之后占比达到了 9%。截至 2019年,欧洲海上风电占比为 11%,当年欧洲海上风电新增装机容量占总的新增装机容量的 24%。
2019年我国提前完成了“十三五”规划中原定 2020年完成 5GW并网海上风电的目标。目前我国已经是世界海上风电装机容量第三大的国家,位列英国、德国之后,并在 2018年、2019年连续两年超越英国成为世界上单年度海上新增风电装机容量*多的国家。在未来一段时间,海上风电仍将是新能源发电的重点发展领域,沿海省份也对未来的海上风电发展做出了规划 [1]。广东省在《广东省培育新能源战略性新兴产业集群行动计划 (2021—2025年)》中提出到 2025年海上风电装机总量达到 15GW;江苏省在《江苏省“十四五”可再生能源发展专项规划 (征求意见稿 )》中提出到 2025年底,全省海上风电并网装机规模达到 14GW,力争突破 15GW;浙江省在《浙江省可再生能源发展“十四五”规划》中指出“十四五”期间,全省海上风电力争新增装机容量 450万 kW以上,累计装机容量达到 500万 kW以上。
另外,分布式发电也将成为未来风电市场重要的组成部分。丹麦风电渗透率高居全球第一,分布式风电正是其陆上风电的主力;作为能源转型的标杆,德国在向清洁能源转型的过程中,大力发展包括分布式风电在内的分布式能源。除了分布式发电就地并网、就地消纳的优势,其发展也与当地的分布式发电的政策息息相关。 21世纪伊始,欧美国家以及日本等就已经从政策上大力扶持分布式发电 [8]。 2019年开始,我国政府也加大力度鼓励分布式风电项目的发展。国家发展改革委、司法部联合印发的《关于加快建立绿色生产和消费法规政策体系的意见》 [9]中明确提到要加大对分布式能源的政策支持力度,多省也已经出台分布式风电规划以及相关鼓励政策[10],我国在 2019年审批核准并且开工建设多个分布式风电项目。我国的分布式风电已经进入一个新的快速发展阶段。
因此,未来风电发展将形成集中式与分布式风电、海上风电与陆上风电并举的局面。随着全球风电市场的不断深度发展,将有越来越多的地区形成高比例风电的电网,未来的电网将从局部的高比例风电场景过渡到全局性的高比例风电场景。
1.2 高比例并网风电引起的事故及其对电力系统动态的影响
随着高比例并网风电局部化程度不断加深以及全局化局面逐渐形成,高比例风电并网场景下的电网运行事故频发,对电力系统安全稳定运行造成了巨大的不利影响。目前,在部分风电占比较高的地区,如美国得克萨斯州,欧洲北海,我国华北沽源、新疆哈密等地区,已出现多种形态各异、机理不明的电网运行事故。按照事故发展的形态,较为典型的事故包含风电机组脱网事故、系统次 /超同步振荡事故和系统频率越限事故。充分认识高比例风电并网场景下各类事故的起因、经过及其引起的严重后果,掌握事故发生机制,对风电并网标准制定、风电设计制造及系统安全稳定运行和优化具有重要意义。
1. 风机暂态脱网事故对电力系统安全稳定造成的影响
由于电力电子变换器是变速风机并网的核心环节,且其应力过载能力较低,部分风机在系统扰动时会自动脱离电网,造成的后果极其严重。 2011年 4月 17日,我国河北张家口国华佳鑫风电场 35kV侧装备故障,引发 4座风电场 344台风电机组低压脱网,并*终造成张家口地区损失风电出力 854MW,占事故前张家口地区风电出力的 48.5%[11]。2016年 9月 28日,澳大利亚南澳大利亚州受极端恶劣天气影响,电网 88s内遭受 5次系统故障,引起 9座风电场共计 445MW的风力发电脱网,风电出力的大幅度损失进一步加剧了系统的功率不平衡,并使得南澳大利亚州与维多利亚相连的一条联络线严重过载跳闸,*终引发系统频率崩溃,南澳大利亚州电网全停[12]。
目前,从电力系统安全稳定运行的需求出发,许多国家、地区或电力运营企业发布了风电并网技术标准,要求风机具备一定的故障 (低电压、高电压 )穿越能力。但随着并网风电容量的增加,故障发生瞬间的应力过载不再是导致脱网事件的单一因素,故障期间、故障切除后出现的失稳成为诱发脱网事件的新生因素。
2. 次/超同步振荡事故对电力系统安全稳定造成的影响
随着并网风电占本地电源的比例的不断增加,电力系统出现了越来越多的大规模、集中式风力发电经远距离接入的弱支撑送端场景,而且在这些场景中频繁发生数十赫兹的振荡问题,造成了严重的系统设备受损停运事故 [13]。从 2010年 10月开始,我国华北沽源地区发生了上百次与双馈风电场和串补线路有关的次同步振荡,振荡频率在 3~10Hz变化,电流振幅*高可达基波的 50%左右,造成大量风机脱网[14]。另外在我国新疆哈密地区,从 2015年 7月以来,多次发生频率为 20~80Hz的振荡,严重时曾导致 3台火电机组扭振保护动作切机 [15]。2009年 10月发生的美国得克萨斯州某双馈风电场经串补线路送出系统次同步振荡事故,振荡频率约 20Hz,电压振荡幅值达到 1.9p.u.,造成大量双馈型风机电路损坏,风电场停运 [15]。此外,2014年 3月在欧洲北海某海上风电场经电压源型直流输电 (VSC-HVDC)发生的高频振荡事故中,振荡频率为 200~250Hz,导致直流换流站停运。
目前,部分次/超同步振荡事件(如沽源振荡、哈密振荡 )的机理仍未能得到很
展开